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Sequential N-body codes have been in existence for many years.
This paper shows how their algorithms may be adapted to produce
an N-body code to run on a paraliel machine and describes tho
impletmentation of such a code upon the Edinburgh Concurrent
Supercomputer. The performance of the final program is analyzed, and
an appendix discusses the optimal choice of the order of the integrator.
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1. INTRODUCTION

N-body codes integrate through time the equations of
motion for a collection of particles moving under forces
between them. In the program developed during this study,
the force involved is that due to gravity acting within
a group of stars. Sophisticated algorithms have been
previously written to integrate such models using serial
computers [ 1 and references theirein; 2]. The aim of the
work described in the present paper was to write an N-body
code that extended these techniques for use on a parallel
machine: the Edinburgh Concurrent Supercomputer (ECS).
The eventual program went through a succession of stages
during development, as modifications were introduced to an
initial version. The parallel framework of the code and the
master/stave  structure  present in all the stages were
suggested by an carlier M-body paralle] code written by
Duncan Roweth to run on the BCS. (This used the “leapfrog
algorithm™ which s explained Jater (Section 3.3.2).) The
code developed has been used for systems in which the stars
all have the same mass; however, with small modifications
it would be ready for use in a multimass simulation.

This paper begins with a description of the computer
environment. We go on to look at the program and its
development, starting with the overall structure and then
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proceeding to study the development of particular parts
of the program: the communications, computational
algorithm, structure, and starting and finishing sequences.
Fraving described the program, its perfermance is analyzed.
Throughout this paper we shall use the units of Heggic
and Mathicu [3] unless otherwise stated. That is, we shall
take G=1, M= 1,and E= — §, where G is the gravitational
constant, M is the total mass, and E is the total energy.

2. COMPUTING ENVIRONMENT

The ECS is an array of several hundred transputers. Each
transputer contains a processor (rated at about 1 Mfilop),
memory, and communications. Each transputer has four
“hard links,” that'is, connections that can be joined to other
transputers to send messages between them. By making
many such connections, transputers can be linked together
to form large “concurrent” systems. The program whose
development is described in this paper runs on such a
system.

To program cffectively in this environment, account must
be taken of the time required to communicate between
transputers; for computing efficiency it must be minimized.
In the chain of communication it takes much longer to send
messages between different transputers than internally
hetween an individual transputer’s processes (along “soft
links™). In addition, one must avoid deadtock, the halting of
one process (o await inpul from apother, when this second
process in turn is awaiting further output from the first.

To use the full power of the machine, the dominant
calculational part of the problem to be tackled must be
divided into a number of nearly equal parts that can be
solved independently on separate transputers. If the
problem is not divided evenly, then some of the transputers
will be left idle whilst others are still finishing off another
part of the work.
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3. THE PROGRAM

3.1. Overall Structure

Right from the first version, the program could be divided
into two sections: the master (one transputer} controis the
system, initializes the calculation, collects the results, and is
connected with input/output devices; the slaves (s trans-
puters) perform the bulk of the calculations. Information
about the stars needed for a particular transputer’s calcula-
tions are stored in that transputer’s memory in an array
(called "world™} with the successive data for different bodies
arranged sequentially.

The program’s operation is started by the master. It either
reads in or generates a set of initial data for each star from
which calculations can begin. It then communicates this
data to the slaves and initiates the main sequence of opera-
tion. During this process the slaves numerically integrate the
equations of motion of the stars, monitored and guided by
the master. Once the stars have had their motion integrated
to a preset time, the master terminates the main sequence of
operation and, assisted by the slaves, finds any information
required about the stars. This it lists in a file. A long
integration is composed of several short runs during which
the final data are listed at the end of each run and read into
the next as initial data.

In the more detailed study of the program and its
development which follows, we shall in succession consider
its different constituent parts. We begin with the com-
munication network between processors which remained
more or less the same throughout program development
{Section 3.2). Then we look at the algorithm used for the
slaves’ calculations, which underwent several changes
{Section 3.3). Alongside these changes there were some
adaptations made to parts of the larger program and these
are detailed in Sections 3.4 and 3.5. The procedures used at
the beginning and end of the run are commented upon in
Sections 3.6 and 3.7, respectively.

3.2. Communications

The master and slave transputers are joined together in a
simple loop (Fig. 1). Data are sent around this loop in one
direction passing successively through the transputers. If the
message is intended for the master, it is stopped there.
Otherwise it is passed on by the transputers until terminated
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FIG. 1. The “hard links” providing communications between the
transputers.

at the original sender, by which time it has passed through
them all. The segments of program that run on each trans-
puter are further divided into a main process that does the
calculations and two buffer processes (Fig. 2).

The buffers facilitate communication between trans-
puters. One buffer (Inbuf) collects messages arriving from
the incoming hard link and passes these on to the main
process. The other (Outbuf) collects messages from the
main process and sends them out on the outgoing hard link.
Together, by temporarily storing messages, they ensure that
the hard links between processors are used efficiently and
without “deadlocking.” The master has an additional hard
link running from the main process to the input/output
devices.

Communication time could be improved, for instance, by
reflining the way in which the transputers are linked
together. One could arrange the hard links into a branching
structure to minimize the distance that messages have to
travel between transputers. However, more significant gains
are to be made by developing the calculation algorithms
which tend to dominate the communications, and it is into
this area that we proceed in the next section.

3.3. The Integration Algorithm in the Main
Sequence of Operation

During the main sequence of operation the slaves numeri-
cally integrate through time the stars’ equations of motion,
under the master’s control. It is done by the repetition of a
collection of operations. Consider a particular cycle. To
begin with all the stars have their positions estimated at a
time advanced from that of the previous cycle. Then, for a
number of the stars, the force on them due to the others is
calculated. This new data shall be used in later cycles’
estimations of position. These stars are said to have been
“updated”; they have had their equations of motion
integrated to the time used in the cycle.
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FIG. 2. A wransputer’s internal processes and communications.
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To parallelize this section of operation the star updates
are divided amongst the transputers: different slaves update
different stars at the same time. As an illustration of such a
cycle we shall outline the one contained within the final
program, which had individual timesteps. The cycie begins
with the muaszer finding the next s stars to be updated {where
s is the number of slaves). Then each slave updates one of
these stars. Each s/qve repeats a loop: receive message from
the masier, stating which body to update; predict the posi-
tions of al the bodies and also the vetocity of the body to be
updated; calculate the new force on the body to be updated
and compute its derivatives using divided differences (a
method given in [2] and described in more detail in
Section 3.3.3); add corrector terms to the updated body’s
predicted position and velocity and calculate the next time
by which it must be updated; send the new data for the
updated body to the other transputers and receive from
them their new data on updated bodies.

Before we look at the initial algorithm used we should
think about the statistical validity and accuracy of such
algorithms,

33.1. Sravistical Validity and Accuracy

We need to have some idea of the algorithm’s statistical
validity: does our solution resemble the exact solution
starting from the same initial conditions? During an
N-Body simulation, numerical errors accumulate and the
system’s coordinates deviate exponentiaily from the exact
solution to the equations of motion and initial conditions.
For typical codes, the error of the integrated model
outstrips the accuracy of the computer in a few crossing
times [4]. However, with a sufficiently high numerical
accuracy it is hoped that the global properties of the
simulation will resemble those of the exact solution (cf.
{4, 51). The deviaticn over the run of the total encrgy, an
integral of the motion, is reckoned to be a good measure of
the validity of these statistics.

The number of bodies and, to a lesser extent, the number
of transputers influence accuracy; however, a more easily
varied third influence is the size of the timestep (the
difference in time between updates). For N-body codes, the
timestep generalily takes the form of a product 4z, where ©
is a time determined by local conditions and A is a constant.
By varying 4 we alter the size of the timesteps and hence
indirectly can adjust the error in the energy.

3.3.2. Algorithm of the First Program: The Lockstep
Leapfrog Algorithm

The first working program used the “leapfrog” algorithm
to integrate the motions of the stars through time. [t is a
lockstep algorithm; i.e., in each cycle all the particles have
their positions and velocities updated to the same time. In
fact in the program all the particles were updated together
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at constant intervals A¢. For each particle the cycle begins
with the caiculation of the force due to the other particles.
Then the velocity is updated by the formula

Voew = V¥ou + T AL (1)
Finally, the position is given by
rnew =Tod + vnew A[' (2)

{See Fig. 3.) f is the force per unit mass on the individual
particle before the update, v is its velocity, and r is its
position. The routine is repeated at every update.

The algorithm is called the leapfrog algorithm because in
its most effective form the sequence of velocities for the
bodies are taken to be at times differing by half a timestep
from those of its positions {rather than concurrent with
them). Then, the absolute truncation error in the energy per
unit time is O(47%) (cf. [6]).

The aigorithm is paraliclized by dividing the star updates
evenly amongst the slaves. We also only store the data for
N/s bodies on each slave (although this will change during
the program’s subsequent development). (The number of
stars in the system was chosen so as to be a muitiple of the
number of siaves.) After updating, the stars’ velocities and
positions are sent around the ring of transputers. They shall
be used by each siave to find the new forces on its own N/s
stars for the next update, A message contains data for all the
stars stored on the transputer that sent it and hence its size
is proportional to N/s. To go around the loop past all the
slaves a message must travel across s+ 1 hard links. The
communication time will be the product of these two
factors; that is, approximately of order V. In comparison,
the calculations made on each slave in between these com-
munications are approximately O(N?/s), as on each slave
there are N/s body updates each involving adding up the
forces from N — 1 other bodies. Comparing the order of the
calculation and communication terms per body update, we
see that the calculations are dominant for sufficiently many
stars on each processor.

* Find the forces ¢n all of the bodies |

|

' Find new velocities of all bodies using (1) |

l

t Find new positicns of all bodies using (2) '

|

F1G. 3. A flow diagram for the leapfrog lockstep algorithm,
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3.3.3. Ideas for Algorithm Development from the Lockstep
Leapfrog Program

From the lockstep leapfrog algorithm a number of
possible improvements may be made. In the final program
we implement individual timesteps, variable timesteps, and
a higher order in the prediction of orbits. These types of
adaptations are explained by Aarseth [1] and customarily
programs of this kind are called “Aarseth-type” after his
famous “NBODY” series of codes. For the timestepping
equations and numerical analysis for this kind of algorithm
the reader is referred to [ 1, 2, 7, 8 ]. We have to modify these
sequential techniques for optimal results on the parallel
computer. Similar changes were also necessary for the
earlier adaptations for vector computers as described by
McMiilan [9].

3.34, Introducing Individual Variable Timesteps

The first stage in developing the algorithms was the
removal of lockstep and the introduction of individual,
variable timesteps; that is the first two improvements
mentioned in the last section were written into the program
together.

Here a difference emerges between our program and
standard sequential codes: the first modification {individual
timesteps) is only partially implemented. To fit in with the
overall structure (Section 3.1) bodies are not updated
strictly individually but rather a fraction of them are
updated at once, one star per slave. This enables us to
obtain most of the gains in speed of strictly individual
timesteps, whilst, at the same time, spreading the calcula-
tional load across the array and minimizing communica-
tion. The extra computation forced by premature update of
bodies is studied in Section 4.1,

The first individual variable timestep used was a multiple
of r . /v,.... where r . is the distance from the star in ques-
tion to its nearest neighbor and v,  is the relative velocity
of this nearest star. This timestep is comparatively easy to
find—one can record r;, whilst performing the force
calculations (during which the distances between the body
being updated and all other stars are found), and then find
v, . (using the predictor to calculate that nearest star’s
velocity at the present time). (This form of timestep might
be improved in a mathematical sense, if it were instead the
smallest ratio of relative distance apart divided by relative
velocity, but the advantage gained has to be balanced with
the extra calculation time required to find the relative
velocity for all of the bodies.)

For each body, the time by which it must be updated
along with the times of previous updates are recorded with
the rest of its data in world Now, as for the lockstep
program, individual siave transputers store and perform the
calculations for a subset of the bodies (N/s of them). As
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previously, there are partially overlapping calculation and
communication phases; however, during the calculation
phase only one body is updated on each slave, rather than
all N/s. In order to update this body we require all the stars’
positions at this time. They are in general calculated from
truncated Taylor series (“force-polynomials™} which are
based on the estimates for position and its derivatives that
were found at the time of the last update (7,4) (see Section
3.3.5). For this initial stage of program development, with
Jjust positions and velocities used, we are taking

H{1)=rga+ v(t — 154). (3)
This process of predicting the positions of the bodies we
shall call the extrapolations. At the end of the run all the
bodies’ positions and velocities are found by an extra-
polation from their previous values.

With individual timesteps, there has to be a section of the
program that determines which bodies require their orbit
data updated next, After the body update, each slave uses a
heapsort-like routine (see, e.g., [10, 11]) to find the star
stored on it with the smallest time before the next update.
This body shall be updated next upon the sleve. The
smallest times (one per slave) are sent to the master. A
straight comparison of the s messages arriving at the master
finds the smallest time of all the N bodies. This time is now
sent around the loop of slaves so that they can use it to
perform their next update.

3.3.5. Changing 1o a Higher Order Algorithm

After implementing individual variable timesteps the next
progression made was to increase the order of the algo-
rithm. Accompanying this change a new form of individual
variable timestep was also introduced, which is described in
Section 3.3.6. The new algorithm is shown as a flow chart in
Fig. 4.

The algorithm used is a muitistep integrator similar to
that of NBODY1 [1] (but of one order lower in the final
program}. It is based upon the formulae given by [2]: a
predictor—corrector scheme. The structure and propertics
of such algorithms are discussed and summarized in [8].
Essentially the predictor part of the method estimates the
position of a star using a Newtonian extrapolating polyno-
mial (a “lforce polynomial”). The predictor is used to find
the position and velocity of a star whenever required in
between the star’s own updates (for other star’s updates or
at the end of a run). When it is time for a star itself to be
updated, the predictor is used to find provisional values for
its position and velocity. The predictors for other stars are
also used to find their positions at this time. The force on the
star being updated is calculated. The star’s new acceleration,
together with the previous acceleration values involved in
its predictor, is used to obtain a new predictor and correc-
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On all slaves find the positions of

all the bodies using the predictors

On each slave find the velocity of the

body to be updated using its predictor

On each slave find the force on the body

to be updated due to the cther bodies

On each slave find a new

predicter for the updated body

On each slave correct the position

and velocity of the updated body

On each slave find a new

timestep for the updated body

FIG. 4. A flow diagram for the higher order algorithm.

tions (of one order higher) to its provisional position and
velocity. Finally, the next time of update for the star is
found.

In practice we are only required to store the coefficients of
the predictor and the update times for each star. {(Each of
the latter corresponds to a previous acceleration that is used
in the predictor (there will be two less of these than the coef-
ficients of the predictor as the order of the force polynomial
is two less than that of the position).) When the previous
accelerations of a star are required for use in its corrector
and its next predictor, Wiclen’s formulae are rearranged to
recover them from the coefficients of the current predictor.
The program in its final form stored 20 items of data per star
(in array world): the mass (taken to be 1/N throughout),
five coefficients in each coordinate for the position’s
predictor, three previous update times, and the time of next
update.

The correction terms improve the accuracy of the
position and velocity at update; however, their primary use
is as an estimate of the error before correction. We shall be
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using this in the construction of our new choice of timestep,
which is described next.

3.3.6. New Timestep

To go with the higher order algorthm a more
sophisticated formula is used for the timesteps. The
individual timestep that is computed for each star is chosen
to keep the estimated absolute error in energy per update
within a bound {g), preset by the user.

The energy of a single star (per unit mass) is

E=3v' + (1),

where ¢ 15 the potential at its position. So the error in this
quantity is

dE=v-8v+dr-Vo(r) (4)

and

[OET < ¥l |dv| + |or| |f], (5)
where f is acceleration. The errors in the position and
velocity (dr and dv, respectively) are taken to be the first
terms that are not included in their respective Taylor series.
For the timestep actually used in the update, these are
precisely the correction terms mentioned in the preceding
section.

It is reasonable to equate the error of a position or
velocity series with the first truncated term. Press and
Spergel [7] have shown that these terms will dominate
higher order ones with a small enough timestep. In my
program the actual truncation errors in position and
velocity are of one order higher than their added-on correc-
tions. However, we cannot find a timestep based on these
error terms. Although we know their order we do not have
any way of estimating their coefficients, and hence sizes, and
it is these that we require for the timestep calculation.
(There is an explanation.in [ 11, pp. 555-5567].) Therefore
the correction terms themselves are taken as the truncation
errors.

From (5) we obtain two conditions,

[v] vl IF] [or] <, (6)

where ¢ is a preset constant: the energy error bound. We
shall now show how to find a provisional timestep that is
the largest one satisfying both these conditions. Upon com-
pleting an update we find two timesteps, 4¢, and A4t,. The
first is the one that wouid have made the term |v| | v| equal
to g, and the second is that which would have made |dr| |f]
equal to & For these calculations we take |v| and |f| to be
constant, assigning them their values at the actual update.
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(6v| and |6r| are treated as being the first truncated terms
from the Taylor series for velocity and position, respectively
{constant multiples of powers of the respective timesteps 41
and At,). That is,
|dv] =A At} and (6r| =B 4%},
where n is the order of the predictor for estimating the
position between updates, A and B may be found from the
known values of |d¥], |3r|, and Ar at the performed update
(the correction terms and actual timestep). The relation-
ships between these quantities is
10V =A 4¢" and |6r| =B A"+
Using (4), |§E| would have been of the order of « if we had
taken Ar to be the minimum of 47, and 4¢,, and so this
value is provisionaily taken to be the timestep to the next
update.

In order to prevent the timestep from growing too fast, a
further restriction 1s enforced. The provisional timestep is
replaced by 1.4 times the previous timestep if the latter value
is smaller {this stability factor is recommended by Aarseth
[1]). So the new timestep finally takes the value

Ar=min((s(4 v} )", (e(B )~ 14 i) (7)
For the eventual program » = 4 and this becomes
dt=min((e(4 [v])7"), (e(BIf]) 1), 1.4 A1),

{Dunng simulations it was found that the timestep was
hardly ever that associated with the term |dr| |f]; lv| |dv]
was generaily the dominant term in the error of the energy.)

3.4. The Development of Structure from
the Lockstep Leapfrog Program

In the lockstep leapfrog program the slave processors
were only required to store data on a fraction of the stars,
data on the rest being sent in from other processors as
necessary. When body updates took place each siave
predicted the position of N/s bodies {a process of order N/s
per cycle) and then communicated this information to all the
other sfaves (a process of order N per cycle). As mentioned
in Section 3.3.2 these processes were dominated by the force
calculations for the body updates (which were a process of
order N?/s per cycle). However, after the introduction of
individual, variable timesteps, only one body is updated in
a cycle on each slgve rather-than N/s. This makes the force
calculations per cycle of order N (N — 1 gravitational forces
are found between the body to be updated and the other
stars). This is now of the same order as the communication
(s updates are performed per cycle), and so communication
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time becomes important in the overall duration of the
program operation. At this stage in the development, the
program’s speed was improved by a change in structure.
Instead of having the slaves each only store a fraction of the
stars’ data, the new program had them each store it all. The
slaves are made to duplicate each other’s work by all
simultaneocusly predicting the positions of all the bodies.
This removes the necessity for the communication of the
bodies’ positions around the ring of transputers at the
beginning of each cycle. The change does introduce extra
work of order N per cycle (predicting N bodies’ positions on
each slave); however, the time taken to do this proves to be
smaller than the aforementioned communication process
{that is of the same order) which it is replacing.

3.5, Timestep Sorting on the Master

Following the previous change another simple improve-
ment is to have the timestep sorting routine entirely on the
master. This sorting is a comparatively small part of the
computing time, being of order (log, N) per bedy update.
Timesteps for the updated bodies are sent to the master and
there the smallest s of them are found using a heapsort-like
routine similar to those which were formerly used on the
slaves. By having the data for all of the bodies on all of the
transputers we are able to update the coordinates of any
body on any transputer. Hence we may update the s bodies
with the smallest time to next integration, rather than the s
bodies each of which have the smallest time on one of the
slaves (the previous situation).

3.6. Initialization

The overall operation of the master and sfave transputers
during the main part of a run have been described. Before
these routines can start, the system must be initialized: a set
of data for the bodies must be generated or read from a file
and sent to the appropriate transputers. To begin with, the
initial conditions were generated by a subprogram that ran
on the master transputer prior to the main code. Later, this
subprogram was made into a separate program. At the start
the initial positions and velocities of the stars in the model
are set up using computer generated random numbers to fit
a distribution function. Times for update and higher terms
in the force polynomials are calculated from these initial
positions and velocities as described in [17.

Contained within the more advanced codes for the master
is a section to read in random initial conditions, or,
equivalently, initial conditions that are the final data for a
previous run. The master stores these data in the array world
before sending them in sections to the slaves, around the
loop. There are s sections (one for each slave); each section
contains the initial data for N/s bodies. In the earlier
programs each slave only recorded the information from
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one section but in later programs they recorded the data for
all of the bodies.

To end the initialization, the program finds the bodies to
be updated and an initial timestep for them. This is done in
the same way as in the main part of the code. Once this
information has been broadcast to the transputers, the main
part of the code’s operation can begin.

3.7. The Duration of the Integration

Initially, when the timesteps were of a fixed length, a
prescribed number of integrations were performed. With the
introduction of variable timesteps the run was more directly
limited by a preset time to which the equations were to be
integrated. During the run the master monitors the time of
the next update; when this exceeds the limit the master
broadcasts a message that directs the slaves to cecase their
main operations. The current state of world is recorded for
future runs, then the slaves update the positions and
velocities to their values at the time limit and find any
information required (e.g., the total kinetic and potential
energies or the position of the center of the core.)

4. THE PERFORMANCE OF THE PROGRAM

During the development of the program, timed runs were
performed at successive stages. A timer incorporated in the
program recorded how long it took to update the system
through a period of time. This excluded the time to set the
program going and that to record the results at the end; the
objective was to relate the parameters of the integration
with the time spent doing the main calculations. The system
also recorded the number of body updates that were
required to perform the integration. In the next section, for-
mulae are found for the time to update the system using the
completed program and varying the numbers of bodies (N),
and transputers. The program is compared with Aarseth’s
NBODY1 [1] running on the Edinburgh mainframe
computer.

4.1. Tests Performed on the Final Program

The results presented here were obtained from a set of ¥
identical masses whose initial positions and velocities were
generated from a Plummer model (for a definition see, e.g.,
{12]). N was varied over a range of multiples of two
between 16 and 2048, and the number of s/aves between one
and 128. The systems were all integrated through one of our
time units which is 1/2 \/5 crossing times. The energy error
bound (&) is taken to be 277 x 1072 for all these numerical
experiments.

Empirically, for most of the results, the processing time

W. L. SWEATMAN

per update (in seconds) is given to within 10% by the
formula

1 N 7

8000 s

174
+ 2000 L (8)
The two contributions are mainly due to computation and
communication, respectively.

The first term, which is due to computation, is
proportional to N/s. This is because for every body update
the calculations are dominated by the prediction of the
positions of all the bodies and the computation of their
contributions to the force upon the body being updated.
Both of these are of order N; however, s bedies are updated
at once, one per slave, giving the N/s proportionality.

The power of 5% on the second (communication) term is
used purely because it is a good fit to the resuits. If the time
to communicate between any two transputers in a system of
any size was constant then this term, too, would be con-
stant: there are s updates at once and the information from
them is simultaneously passed around a loop of s trans-
puters (if we ignore the masrer). In fact, as the number of
transputers in the system grows, the communication time
between them aiso grows and so the communication term is
not independent of s, .

Figure 5 shows the linear relationship between number of
bodies { N} and processing time per body update, for various
numbers of slaves {5). Also shown is Aarseth’s NBODY1

15 nbody1
;48
[+4]

0.024

(seconds)

001+

2048
- 12858

Q.00
0.00

$024.00

— T T

T -1
512.00 1536, 00 2048.00

Computing time per body update

FIG. 5. The linear relationship between number of bodies in a stellar
system () and computing time per body update, for various numbers of
slaves (). (The different numbers of slaves are represented by different lines
as indicated (the line labelled 16s shows the results for an array with 16
slave transputers).) Also shown is Aarseth’s NBODY1 running on a
2 Mflop scalar machine.
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running on a 2 Mflop scalar machine. The different slopes of
the graphs indicate the effect on the computational power
of increasing the number of slaves, while the different
y-intercepts indicate the presence of the second term in (8).

The main part of the calculational work done is 21N
double precision multiplications per update (these are
elaborated upon during the next section). So the computer
is working at the rate 168s/(1 + 14N ~'s°%) thousand
double precision multiplications per second, giving for
large N (when computation dominates communication)
approximately 168,000 double precision multiplications per
second per processor.

Using larger 5 the program takes less time per body
update, but it also forces some updates sooner than are
required by the timestep criterion. (For example, suppose
that we have two stars which require update at times 0.010
and 0.015, respectively. If we update them simultaneously it
must be to the time 0.010 and in this case the second star is
updated 0.005 time units earlier than required. That star will
be eventually updated more times than if it had been
initially updated at 0.015 and only updated thereafter when
strictly necessary.} Figure 6 shows how the number of body
updates taken to integrate a system through a time unit
relates to N for various 5. As N increases the disadvantage
of simultaneously updating s bodies gradually disappears.
This graph indicates how much extra computation is done
as we increase the number of sfaves tackling a given N-body
system. So, for instance, with 1000 bodies, four slaves do
nearly the same amount of computation between them as
one slave would have done; however, 64 slaves do over twice
as much as either of these arrays.

Figure 7 shows graphs of the computing time to update
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FI1G. 6. The total number of body updates required to integrate a
stellar systerm through one time unit plotted against number of bodies (&),
for various numbers of slaves {s) (labelled as in Fig. 5).

the system through a time unit against N, again, for various
s. For a given value of N the lowest line on these graphs will
give the optimal (fastest) number of slaves to integrate the
equations of motion, allowing for both extra body updates
and longer interprocessor communication times.

The program has been tested in simulations of two
Plummer-model systems with 1024 and 10,048 stars, respec-
tively. Further details are given in [13]. For the 1024-body
simulation the energy error bound was taken to be
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FIG. 7. The computing time to update a stellar system through one time unit plotted against number of bodies (N), for various numbers of slaves

(s) (labelled as in Fig. 5): (a) linear scale; (b) log-log plot.
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27 7% 1072 During 0.1 time intervals there were changes in
total energy of nearly 2 x 10 ~°; however, the deviation over
28.1 time units was less than 107* due to cancellation of
these errors {cf. {87)). In order to maintain an energy error
below 1.7 % 10~ * uniis per 0.1 time interval the energy error
bound had to be reduced to 2% x 10~ %n the 10,048-body
simulation.

APPENDIX: OPTIMAL ORDER

In programs of this type there is an optimal order for
computational efficiency: the higher order schemes require
an increasing number of calculations per body update so
that there is a point beyond which the computer time
involved in calculating the higher order terms balances out
the saving in calculations due to having longer timesteps.
The program developed here seemed to be reaching the
point where only small gains were to be made by increasing
the algorithm order any higher. Press and Spergel [ 7] study
the choice of order in Aarseth-type N-body codes. We shall
temporarily adopt their notation whilst studying the results
of their paper. They define the extrapolatable interval (tj)
from a time 7, to be the maximum timestep such that an
extrapolated value (f) of the acceleration (found using the
predictor part of the algorithm) has a fractional accuracy
bounded by a limit (¢) for all smaller timesteps; ie., 1
satisfies the implicit equation

0] _Wlo+0) = flto+, to, My )]
! o+ )]

£, Ot 1,

M is the number of values of acceleration used in the predic-
tor {one less thap its own order). (We see that this is a
criterion similar to that impiied in Section 3.3.6. Total
energy E is an integral of the system and so we may take
that criterion to be |3E|/| E| € x, where 1 1s a constant which
is the energy error bound divided by the total energy.) Press
and Spergel found that the ratio of the extrapolatable inter-
val (tg) to a local timescale {t,) is typically constant to
within a factor of two or three. They approximate the mean
value of this ratio ({s>) by a function of ¢ and M,

: 1/M
<.5‘> =03 (O—(ﬁ) s

(%)
where s = 7./t and 7, = [/

They also give a formula for the optimal value of M flor
a given value of ¢. [t is arrived at by taking the force calcula-
tion as being dominated by evaluating the extrapolating
polynomials, the time for which scales with M. Next the
computation time is taken to be proportional to the force
calculation time divided by (s}, and this function is mini-
mized to find the optimal M. In fact the calculation time

W. L. SWEATMAN

scales as (M + R), where R (s a constant. This is because the
force calculations for the updated particle are of the same
order of magnitude as the extrapolations, but they do not
depend on their order M. In my program R is four (cf. [6]).

Again differing from Press and Spergel, we assert that the
optimal M should actuaily have a fixed crror per unit of
time. Therefore we take g/ {s), rather than ¢ {(as used by
Press and Spergel), as being constant. Cail this constant &;
then usc of (9) gives

()

(10}

The computer time to update the system through a
fixed interval of its own time {(7T,,) is proportional to
{M + R){{s>. If we regard this as being a function of M we
may use it to determine the optimal M for a given £. We take
the natural logarithm of the quantity and then set its
derivative with respect to M to be zero. This gives the
foltowing formuia to be satisfied by the optimal M:

03¢
(M—17+(M+ R)ln(m)_o.

Solving as a quadratic in (M — 1), we {ind that
1 038N | 0364y
M=1-5ln (0.07) t3 (('” (W))
- 0.36\\172
—4(i+R)In (60—7)) .

Taking R=4, we must now estimate £. In NBODY!
when M =4, a typical choice of timestep would be

CrCL/1 LA+ LFPWASL LA+ 1 F12)12, where n=0.03 [1].

Press and Spergel comment that the local timescale

LA LA +1AD/F) LT+ 1£1%)1'72 behaves very similarly

to 7, as given in (9) (an earlier timestep of Aarseth) and so
we shall set <s) to be n?. Now we can invert {10) to derive

0.07
()

We shall fix the value of £ to obtain an error per time unit
similar to that of NBODY! with 4 =003. Substitute (12}
into the formula for optimal M (11} to obtain

B 1 n}jz 1 173,’2 2
M=1 -21n (0_33)i2 ((In (0_33))

¥\ \ 12
—4(1+R)In (0—33)) .

(11)

(12)

(13)
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Now In(5'?/0.3) is negative, so we shall choose the positive
root in order to make M positive. If we put in our value
R =4 we obtain

M~ 4810.
Therefore we conclude that the optimal order for M with
this error per time unit is 5 {or 4). Comparing the time to

update the system through a fixed interval of time with
M =5 with that of another value of M, P, gives

PrN —1/(P—1} 5 1/4
E=(p+4) (0‘3 é) l(gﬂ)

T, 0.07 9\ 007
(P+4) /03¢ 14— 1P =1)
=T<mﬁ)
(P+4)(\/§)3/4—-3/{P‘])
9 3 ’

{Recall that T, oc ((M + R)/{s>).) The values of this ratio
for P equal to 4 and 3 are approximately 1.020 and 1.174,
respectively. The first result shows that the optimum M is
indeed 5 rather than 4; however, it also indicates that
NBODY!1 would be barely improved by an increase in its
order (at this accuracy}. My final program has M =3; as |
was aiming for errors similar to those for NBODY!1 as
above, my algorithm should take less than § the time taken
with the optimal order algorithm.

Makino [8] has also studied the problem of optimal
order. He differs with the results of Press and Spergel in that
he asserts that the optimal order is dependent upon N. This
may be true; however, his results are not appropriate for
integrations at the accuracy of standard N-bedy codes in
use. (His predictor of optimal order becomes negative
unless the relative error in energy is very small for large
numbers of bodies.)
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